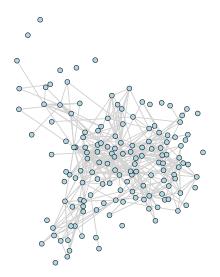
Marco Corneli (C. Bouveyron, P. Latouche, F. Rossi)

Université Côte d'Azur Laboratoire LJAD https://math.unice.fr/~mcorneli/

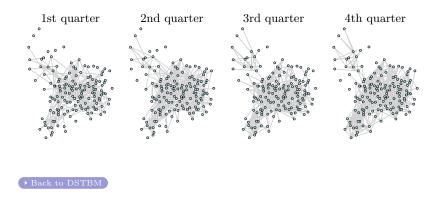
15 October, DS Meetup

Outline


Introduction

STBM

DSTBM


Analysis of the Enron scandal

the Enron Email dataset (2001)

Nodes + edges

the Enron Email dataset (2001)

Types of networks: $(\rightarrow development of statistical approaches)$

- ightharpoonup Binary + static edges
- ▶ Discrete / continuous / categorical / ...
- Covariates on vertices / edges
- ► Dynamic edges:
 - ightharpoonup Continous time \rightarrow point processes
 - ightharpoonup Discrete time ightharpoonup Markov,...

Types of clusters: $(\rightarrow development of statistical approaches)$

- ► Communities (transitivity)
- ► Heterogeneous clusters
- ▶ Partitions, overlapping clusters, hierarchy

Networks can be observed directly or indirectly from a variety of sources:

- ▶ social websites (Facebook, Twitter, ...),
- ▶ personal emails (from your Gmail, Clinton's mails, ...),
- ▶ emails of a company (Enron Email data),
- ▶ digital/numeric documents (Panama papers, co-authorships, ...),
- ▶ and even archived documents in libraries (digital humanities).

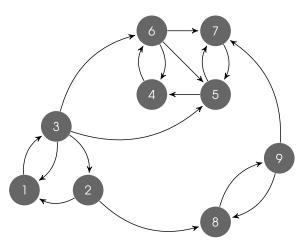


Figure: An (hypothetic) email network between a few individuals.

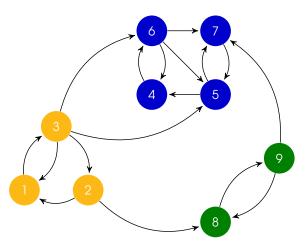


Figure: A typical clustering result for the (directed) binary network.

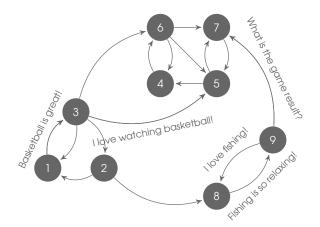


Figure: The (directed) network with textual edges.

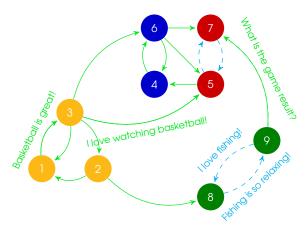


Figure: Expected clustering result for the (directed) network with textual edges.

The stochastic topic block model

the stochastic topic block model (STBM) [BLZ16]:

- generalizes both SBM and LDA models
- ▶ allows to analyze (directed and undirected) networks with textual edges.

But: cannot deal with dynamic networks!!

The stochastic topic block model

the stochastic topic block model (STBM) [BLZ16]:

- generalizes both SBM and LDA models
- ▶ allows to analyze (directed and undirected) networks with textual edges.

But: cannot deal with dynamic networks!! Goal: develop a dynamic extension of STBM

Outline

Introduction

STBM

DSTBM

Analysis of the Enron scandal

We are interesting in clustering the nodes of a (directed) network of M vertices into Q groups:

We are interesting in clustering the nodes of a (directed) network of M vertices into Q groups:

▶ the network is represented by its $M \times M$ adjacency matrix A:

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge between i and j} \\ 0 & \text{otherwise} \end{cases}$$

We are interesting in clustering the nodes of a (directed) network of M vertices into Q groups:

▶ the network is represented by its $M \times M$ adjacency matrix A:

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge between i and j} \\ 0 & \text{otherwise} \end{cases}$$

▶ if $A_{ij} = 1$, the textual edge is characterized by a set of D_{ij} documents:

$$W_{ij} = (W_{ij}^1, ..., W_{ij}^d, ..., W_{ij}^{D_{ij}})$$

We are interesting in clustering the nodes of a (directed) network of M vertices into Q groups:

▶ the network is represented by its $M \times M$ adjacency matrix A:

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge between i and j} \\ 0 & \text{otherwise} \end{cases}$$

▶ if $A_{ij} = 1$, the textual edge is characterized by a set of D_{ij} documents:

$$W_{ij} = (W_{ij}^1, ..., W_{ij}^d, ..., W_{ij}^{D_{ij}})$$

• each document W_{ij}^d is made of N_{ij}^d words:

$$W_{ij}^{d} = (W_{ij}^{d1}, ..., W_{ij}^{dn}, ..., W_{ij}^{dN_{ij}^{d}}).$$

Modeling of the edges

Let us assume that edges are generated according to a SBM model:

 \blacktriangleright each node *i* is associated with an (unobserved) group among *Q* according to:

$$Y_i \sim \mathcal{M}(1, \rho),$$

where $\rho \in [0,1]^Q$ is the vector of group proportions,

Modeling of the edges

Let us assume that edges are generated according to a SBM model:

 \blacktriangleright each node *i* is associated with an (unobserved) group among *Q* according to:

$$Y_i \sim \mathcal{M}(1, \rho),$$

where $\rho \in [0,1]^Q$ is the vector of group proportions,

▶ the presence of an edge A_{ij} between i and j is drawn according to:

$$A_{ij}|Y_{iq}Y_{jr}=1\sim\mathcal{B}(\pi_{qr}),$$

where $\pi_{qr} \in [0, 1]$ is the connection probability between clusters q and r.

The generative model for the documents is as follows:

• each pair of clusters (q, r) is first associated to a vector of topic proportions $\theta_{qr} = (\theta_{qrk})_k$ sampled from a Dirichlet distribution:

$$\theta_{qr} \sim \text{Dir}(\alpha)$$
,

such that
$$\sum_{k=1}^{K} \theta_{qrk} = 1, \forall (q, r).$$

The generative model for the documents is as follows:

• each pair of clusters (q, r) is first associated to a vector of topic proportions $\theta_{qr} = (\theta_{qrk})_k$ sampled from a Dirichlet distribution:

$$\theta_{qr} \sim \operatorname{Dir}\left(\alpha\right),$$

such that $\sum_{k=1}^{K} \theta_{qrk} = 1, \forall (q, r).$

▶ the *n*th word W_{ij}^{dn} of documents d in W_{ij} is then associated to a latent topic vector Z_{ij}^{dn} according to:

$$Z_{ij}^{dn}|\left\{A_{ij}Y_{iq}Y_{jr}=1,\theta\right\}\sim\mathcal{M}\left(1,\theta_{qr}\right).$$

The generative model for the documents is as follows:

• each pair of clusters (q, r) is first associated to a vector of topic proportions $\theta_{qr} = (\theta_{qrk})_k$ sampled from a Dirichlet distribution:

$$\theta_{qr} \sim \text{Dir}(\alpha)$$
,

such that $\sum_{k=1}^{K} \theta_{qrk} = 1, \forall (q, r).$

▶ the *n*th word W_{ij}^{dn} of documents d in W_{ij} is then associated to a latent topic vector Z_{ij}^{dn} according to:

$$Z_{ij}^{dn}|\left\{A_{ij}Y_{iq}Y_{jr}=1,\theta\right\}\sim\mathcal{M}\left(1,\theta_{qr}\right).$$

▶ then, given Z_{ij}^{dn} , the word W_{ij}^{dn} is assumed to be drawn from a multinomial distribution:

$$W_{ij}^{dn}|Z_{ij}^{dnk}=1\sim\mathcal{M}\left(1,\beta_{k}=\left(\beta_{k1},\ldots,\beta_{kV}\right)\right),$$

where V is the vocabulary size.

► notice that the two previous equations lead to the following mixture model for words over topics:

$$W_{ij}^{dn} | \left\{ Y_{iq} Y_{jr} A_{ij} = 1, \theta \right\} \sim \sum_{k=1}^{K} \theta_{qrk} \mathcal{M} \left(1, \beta_k \right).$$

STBM at a glance...

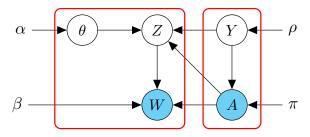


Figure: The stochastic topic block model.

STBM at a glance...

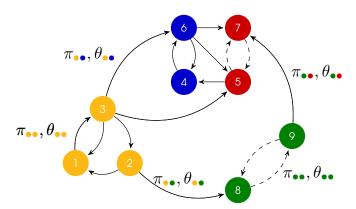


Figure: The stochastic topic block model.

Inference

A likelihood based approach is adopted. The aim is to maximize the complete data log-likelihood

$$\log p(A, W, Y | \rho, \pi, \beta) = \log \sum_{Z} \int_{\theta} p(A, W, Y, Z, \theta | \rho, \pi, \beta) d\theta,$$

with respect to (ρ, π, β) and $Y = (Y_1, \dots, Y_M)$.

Inference

A likelihood based approach is adopted. The aim is to maximize the complete data log-likelihood

$$\log p(A, W, Y | \rho, \pi, \beta) = \log \sum_{Z} \int_{\theta} p(A, W, Y, Z, \theta | \rho, \pi, \beta) d\theta,$$

with respect to (ρ, π, β) and $Y = (Y_1, \dots, Y_M)$.

Strategy:

- ▶ an approximated Expectation-Maximization (**VEM**) algorithm is used to estimate the optimal (ρ, π, θ) ,
- ightharpoonup a greedy classification (C) over the node labels Y is performed.

The above two steps (C-VEM) are repeated until convergence.

Outline

Introduction

STBM

DSTBM

Analysis of the Enron scandal

Dynamic data

Several network **snapshots** are observed during the time interval [0, T]: Enron Snapshots

Dynamic data

Several network **snapshots** are observed during the time interval [0, T]: Enron Snapshots

We need a partition!

Dynamic data

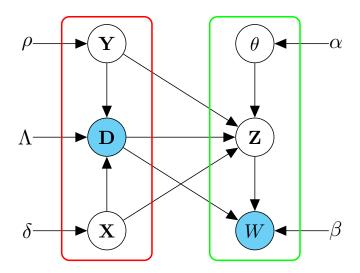
Several network **snapshots** are observed during the time interval [0, T]: Enron Snapshots

We need a partition!

A partition of the time interval [0, T] is introduced

$$0 = t_0 < t_1 < \dots < t_U = T$$

and $I_u := [t_{u-1}, t_u[, \Delta_u \text{ is the size of } I_u]$.


A sequence of static networks is built by "summing" the interactions between all pairs (i, j) over all I_u .

- ▶ From A_{ij} to D_{iju} : the number of interactions that occurred between i and j during I_u
- ▶ From W_{ij}^{dn} to W_{ij}^{un} : nth word during I_u
- ► Each time interval is assumed to belong to an unknown time cluster:

$$X_u \sim \mathcal{M}(1,\delta),$$

where $\delta \in [0,1]^L$ is the vector of time cluster proportions.

- $Y_i \sim \mathcal{M}(1, \rho)$ iid
- $ightharpoonup X_u \sim \mathcal{M}(1,\delta)$ iid
- $D_{iju}|Y_{iq}Y_{jr}X_{ul} = 1 \sim \mathcal{P}(\lambda_{qrl}\Delta_u)$
- \bullet $\theta_{qrl} \sim \text{Dir}(\alpha)$
- $W_{ij}^{un}|Z_{ij}^{unk}=1\sim \mathcal{M}(1,\beta_k).$

Inference

- ightharpoonup Same trick as for STBM: Y and X are pivotal
- ► Consider $\log(D, W, Y, X | \rho, \delta, \Lambda, \beta)$
- ▶ C-VEM: maximize the log-likelihood with respect to $R(\cdot), Y, X, \rho, \delta, \Lambda, \beta$, in turn.

Model selection

$$ICL = \tilde{\mathcal{L}}(R(\cdot); D, Y, X, D, \beta) - \frac{K(V-1)}{2} \log(LQ^2)$$

$$+ \max_{\Lambda, \rho, \delta} \log p(D, Y, X | \Lambda, \rho, \delta) - \frac{LQ^2}{2} \log(MU(M-1))$$

$$- \frac{Q-1}{2} \log(M) - \frac{L-1}{2} \log(U).$$

Outline

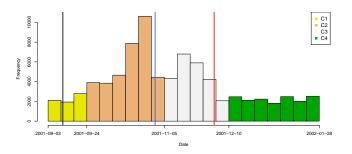
Introduction

STBM

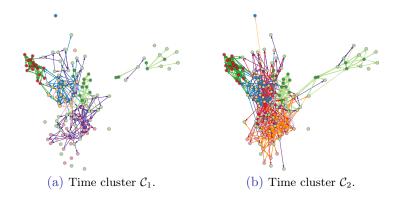
DSTBM

Analysis of the Enron scandal

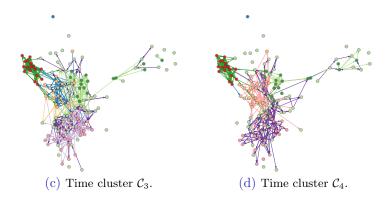
Analysis of the Enron scandal

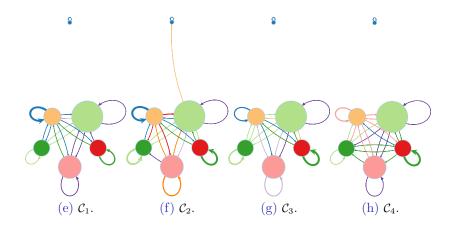

- ▶ All email exchanges between 149 Enron employees
- ➤ Time window considered: September, 3rd, 2001 to January, 28th, 2002
- ► Three key dates:
 - ► September, 11th, 2001: the terrorist attacks to the Twin Towers and the Pentagon
 - ▶ October, 31st, 2001: the Securities and Exchange Commission (SEC) opened on investigation for fraud concerning Enron.
 - ▶ December, 2nd, 2001: Enron filed for bankruptcy, resulting in more than 4,000 lost jobs.

Analysis of the Enron scandal


- ▶ The selected time window is partitioned into subintervals, each interval corresponding to a week.
- U = 21 weeks
- ▶ 4321 directed edges
- ▶ Dictionary: 49955 words
- ► Test models $(Q, K, L) \in \{1, ..., 10\}^3$

Results


- ▶ Model selection: Q = 6, K = 9, L = 4
- ► Time clusters:


Results: clusters of nodes

Results: clusters of nodes

Results: clusters of nodes

Results: topics

edison puc dwr davis sce mara rto california	master sara isda agreement nymex amendment pst marie	mmbtu transwestern deliveries lynn ttw watson juan pkgs	netco tphase plans detailed start integration oxley shepperd	backup seat location supplies test mails phones seats	interview interviewers super dinner fantastic ted park candidates	cycle ofo usage select afghanistan storage mmcf declared	category trv hide efct linkfromexcel stv toc tvexp	kam matt book bidweek grigsby transferring biliana wolfe
electricity	shackleton	lorraine	ordinate	announceme	nt recruiting	taleban	viewing	huang
state governor	executed columbia	lindy kimberly	seating estate	computer regular	full tax	winter forces	williams published	reitmeyer dsi
said	america	twatson	webb	assignments		burn	frontier	tori
utilities	guaranty	capacity nng	january	assignment		windows	asp	mog
legislature dasovich	corp netting	teb	tto twe	numbers locations	analysts associates	noms prorata	propt website	randall holst
steffes	handling	kilmer	jeanie					jasonsubject
ctc	swap	rod	retention	plan	aspemail	ground	report	transferred
utility	tshackleton	socalgas	slone	rely	baking	interruptible		mclaughlin
sue	futures	lokey	louise	floors	comcellular	nom	western	trangel
esps	avista	lohman	jan	notified	culinary	injections	var	<u>ag</u> a
	1		1		1	1	1	1
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9

Conclusion

- ▶ DSTBM : allows to model temporal networks with textual edges
- ▶ C-VEM algorithm for inference
- ▶ Model selection criterion
- ▶ Find clusters of nodes and topics of discussions

Thanks for your attention

Linkage.fr

Linkage

New Job

Jobs pierre

Innovative and efficient cluster analysis of networks with textual edges

Linkage allows you to cluster the nodes of networks with textual edges while identifying topics which are used in communications. You can analyze with Linkage networks such as email networks or co-authorship networks. Linkage allows you to upload your own network data or to make requests on scientific databases (Arxiv, Pubmed, HAL).

Try Linkage

Simulations

		Setup A	
Model	node ARI	time ARI	edge ARI
dSTBM	0.99 (0.06)	1 (0)	0.99 (0.06)
dSBM	1 (0)	1 (0)	-
STBM	1 (0)	-	0.66(0.21)
SBM	0.01 (0.06)	-	-
LDA	-	-	0.73 (0.20)

		Setup B	
Model	node ARI	time ARI	edge ARI
dSTBM	1 (0)	1 (0)	1 (0)
dSBM	0.98 (0.03)	0.00(0.01)	-
STBM	0.5(0.5)	-	0.02(0.03)
$_{\mathrm{SBM}}$	0.99 (0.04)	-	-
LDA		-	1 (0)

		Setup C	
Model	node ARI	time ARI	edge ARI
dSTBM	1 (0)	1(0)	1 (0)
dSBM	0.67(0.05)	0.00(0.01)	-
STBM	1 (0)	-	0.70(0.10)
SBM	0.65 (0.04)	-	-
LDA	_	-	0.69(0.15)

Biblio I

- Charles Bouveyron, Pierre Latouche, and Rawya Zreik, *The stochastic topic block model for the clustering of vertices in networks with textual edges*, Statistics and Computing (2016), 1–21.
- Peter D Hoff, Adrian E Raftery, and Mark S Handcock, Latent space approaches to social network analysis, Journal of the american Statistical association **97** (2002), no. 460, 1090–1098.
- K. Nowicki and T.A.B. Snijders, *Estimation and prediction* for stochastic blockstructures, Journal of the American Statistical Association **96** (2001), 1077–1087.
- Y.J. Wang and G.Y. Wong, Stochastic blockmodels for directed graphs, Journal of the American Statistical Association 82 (1987), 8–19.